Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38069363

RESUMO

The continuous emergence of SARS-CoV-2 variants has led to a protracted global COVID-19 pandemic with significant impacts on public health and global economy. While there are currently available SARS-CoV-2 vaccines and therapeutics, most of the FDA-approved antiviral agents directly target viral proteins. However, inflammation is the initial immune pathogenesis induced by SARS-CoV-2 infection, there is still a need to find additional agents that can control the virus in the early stages of infection to alleviate disease progression for the next pandemic. Here, we find that both the spike protein and its receptor CD147 are crucial for inducing inflammation by SARS-CoV-2 in THP-1 monocytic cells. Moreover, we find that 3-epi-betulin, isolated from Daphniphyllum glaucescens, reduces the level of proinflammatory cytokines induced by SARS-CoV-2, consequently resulting in a decreased viral RNA accumulation and plaque formation. In addition, 3-epi-betulin displays a broad-spectrum inhibition of entry of SARS-CoV-2 pseudoviruses, including Alpha (B.1.1.7), Eplison (B.1.429), Gamma (P1), Delta (B.1.617.2) and Omicron (BA.1). Moreover, 3-epi-betulin potently inhibits SARS-CoV-2 infection with an EC50 of <20 µM in Calu-3 lung epithelial cells. Bioinformatic analysis reveals the chemical interaction between the 3-epi-betulin and the spike protein, along with the critical amino acid residues in the spike protein that contribute to the inhibitory activity of 3-epi-betulin against virus entry. Taken together, our results suggest that 3-epi-betulin exhibits dual effect: it reduces SARS-CoV-2-induced inflammation and inhibits virus entry, positioning it as a potential antiviral agent against SARS-CoV-2.


Assuntos
COVID-19 , Daphniphyllum , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , Pandemias , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Antivirais/farmacologia , Inflamação/tratamento farmacológico
2.
Antiviral Res ; 220: 105744, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37944823

RESUMO

Working with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is restricted to biosafety level III (BSL-3) laboratory. The study used a trans-complementation system consisting of virus-like particles (VLPs) and DNA-launched replicons to generate SARS-CoV-2 single-round infectious particles (SRIPs) with variant-specific spike (S) proteins. S gene of Wuhan-Hu-1 strain (SWH1) or Omicron BA.1 variant (SBA.1), along with the envelope (E) and membrane (M) genes, were cloned into a tricistronic vector, co-expressed in the cells to produce variant-specific S-VLPs. Additionally, the replicon of the WH1-like strain without S, E, M and accessory genes, was engineered under the control by a CMV promoter to produce self-replicating RNAs within VLP-producing cells, led to create SWH1- and SBA.1-based SARS-CoV-2 SRIPs. The SBA.1-based SRIP showed lower virus yield, replication, N protein expression, fusogenicity, and infectivity compared to SWH1-based SRIPs. SBA.1-based SRIP also exhibited intermediate resistance to neutralizing antibodies produced by SWH1-based vaccines, but were effective at infecting cells with low ACE2 expression. Importantly, both S-based SRIPs responded similarly to remdesivir and GC376, with EC50 values ranging from 0.17 to 1.46 µM, respectively. The study demonstrated that this trans-complementation system is a reliable and efficient tool for generating SARS-CoV-2 SRIPs with variant-specific S proteins. SARS-CoV-2 SRIPs, mimicking authentic live viruses, facilitate comprehensive analysis of variant-specific virological characteristics, including antibody neutralization, and drug sensitivity in non-BSL-3 laboratories.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes , Anticorpos Antivirais
3.
Philos Trans A Math Phys Eng Sci ; 381(2262): 20220194, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37866382

RESUMO

Atlantic multidecadal variability (AMV) has long been thought to be an expression of low-frequency variability in the Atlantic Meridional Overturning Circulation (AMOC). However, alternative hypotheses have been forwarded, including that AMV is primarily externally forced. Here, we review the current state of play by assessing historical simulations made for the sixth coupled model intercomparison project (CMIP6). Overall, the importance of external forcing is sensitive to the type of AMV index used, due to the importance of globally coherent externally forced signals in the models. There are also significant contrasts between the processes that drive internally and externally forced AMV, but these processes can be isolated by exploring the multivariate expression of AMV. Specifically, internal variability in CMIP6 models is consistent with an important role of ocean circulation and AMOC and the externally forced AMV is largely a surface-flux forced mechanism with little role for the ocean. Overall, the internal multivariate fingerprint of AMV is similar to the observed, but the externally forced fingerprint appears inconsistent with observations. Therefore, climate models still suggest a key role for ocean dynamics, and specifically AMOC, in observed AMV. Nevertheless, models remain deficient in a number of areas, and a stronger role for externally forced dynamical changes cannot be ruled out. This article is part of a discussion meeting issue 'Atlantic overturning: new observations and challenges'.

4.
Microbiol Spectr ; : e0385422, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713503

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the Coronavirus disease-19 (COVID-19) pandemic, utilizes angiotensin-converting enzyme 2 (ACE2) as a receptor for virus infection. However, the expression pattern of ACE2 does not coincide with the tissue tropism of SARS-CoV-2, hinting that other host proteins might be involved in facilitating SARS-CoV-2 entry. To explore potential host factors for SARS-CoV-2 entry, we performed an arrayed shRNA screen in H1650 and HEK293T cells. Here, we identified a disintegrin and a metalloproteinase domain 9 (ADAM9) protein as an important host factor for SARS-CoV-2 entry. Our data showed that silencing ADAM9 reduced virus entry, while its overexpression promoted infection. The knockdown of ADAM9 decreased the infectivity of the variants of concern tested-B.1.1.7 (alpha), B.1.617.2 (delta), and B.1.1.529 (omicron). Furthermore, mechanistic studies indicated that ADAM9 is involved in the binding and endocytosis stages of SARS-CoV-2 entry. Through immunoprecipitation experiments, we demonstrated that ADAM9 binds to the S1 subunit of the SARS-CoV-2 Spike. Additionally, ADAM9 can interact with ACE2, and co-expression of both proteins markedly enhances virus infection. Moreover, the enzymatic activity of ADAM9 facilitates virus entry. Our study reveals an insight into the mechanism of SARS-CoV-2 virus entry and elucidates the role of ADAM9 in virus infection. IMPORTANCE COVID-19, an infectious respiratory disease caused by SARS-CoV-2, has greatly impacted global public health and the economy. Extensive vaccination efforts have been launched worldwide over the last couple of years. However, several variants of concern that reduce the efficacy of vaccines have kept emerging. Thereby, further understanding of the mechanism of SARS-CoV-2 entry is indispensable, which will allow the development of an effective antiviral strategy. Here, we identify a disintegrin and metalloproteinase domain 9 (ADAM9) protein as a co-factor of ACE2 important for SARS-CoV-2 entry, even for the variants of concern, and show that ADAM9 interacts with Spike to aid virus entry. This virus-host interaction could be exploited to develop novel therapeutics against COVID-19.

6.
J Immunother Cancer ; 11(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37220954

RESUMO

While checkpoint inhibitor therapy has revolutionized the treatment landscape of some solid tumors, it has shown limited efficacy in metastatic castration-resistant prostate cancers (mCRPC). A small (~3-5%) but clinically distinct subset of mCRPC tumors have a DNA mismatch repair deficiency (dMMR) and develop a hypermutation phenotype with elevated tumor mutational burden and high microsatellite instability (MSI-H). Retrospective analyses have shown dMMR/MSI-H status to be a predictive biomarker for response to pembrolizumab in prostate tumors. Here, in this report, we present a case of a patient with mCRPC harboring a somatic dMMR who had progressed on pembrolizumab after an initial response. He enrolled on a clinical trial with JNJ-081, a prostate-specific membrane antigen-CD3 bispecific T-cell engager antibody and experienced a partial response with course complicated by cytokine release syndrome. On progression, he was reinitiated on pembrolizumab and experienced an exceptional second response, with his prostate-specific antigen falling from a high of 20.01 to undetectable after 6 weeks and remaining undetectable for >11 months. To our knowledge, this represents the first reported case of bispecific T-cell engager-mediated re-sensitization to checkpoint inhibitor therapy in any cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Reparo de Erro de Pareamento de DNA , Estudos Retrospectivos , Anticorpos Monoclonais Humanizados , Instabilidade de Microssatélites , Linfócitos T
7.
Biol Sex Differ ; 14(1): 19, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37060018

RESUMO

BACKGROUND: Prenatal alcohol (ethanol) exposure (PAE) results in brain growth restriction, in part, by reprogramming self-renewal and maturation of fetal neural stem cells (NSCs) during neurogenesis. We recently showed that ethanol resulted in enrichment of both proteins and pro-maturation microRNAs in sub-200-nm-sized extracellular vesicles (EVs) secreted by fetal NSCs. Moreover, EVs secreted by ethanol-exposed NSCs exhibited diminished efficacy in controlling NSC metabolism and maturation. Here we tested the hypothesis that ethanol may also influence the packaging of RNAs into EVs from cell-of-origin NSCs. METHODS: Sex-specified fetal murine iso-cortical neuroepithelia from three separate pregnancies were maintained ex vivo, as neurosphere cultures to model the early neurogenic niche. EVs were isolated by ultracentrifugation from NSCs exposed to a dose range of ethanol. RNA from paired EV and cell-of-origin NSC samples was processed for ribosomal RNA-depleted RNA sequencing. Differential expression analysis and exploratory weighted gene co-expression network analysis (WGCNA) identified candidate genes and gene networks that were drivers of alterations to the transcriptome of EVs relative to cells. RESULTS: The RNA content of EVs differed significantly from cell-of-origin NSCs. Biological sex contributed to unique transcriptome variance in EV samples, where > 75% of the most variant transcripts were also sex-variant in EVs but not in cell-of-origin NSCs. WGCNA analysis also identified sex-dependent enrichment of pathways, including dopamine receptor binding and ectoderm formation in female EVs and cell-substrate adhesion in male EVs, with the top significant DEGs from differential analysis of overall individual gene expressions, i.e., Arhgap15, enriched in female EVs, and Cenpa, enriched in male EVs, also serving as WCGNA hub genes of sex-biased EV WGCNA clusters. In addition to the baseline RNA content differences, ethanol exposure resulted in a significant dose-dependent change in transcript expression in both EVs and cell-of-origin NSCs that predominantly altered sex-invariant RNAs. Moreover, at the highest dose, ~ 73% of significantly altered RNAs were enriched in EVs, but depleted in NSCs. CONCLUSIONS: The EV transcriptome is distinctly different from, and more sex-variant than, the transcriptome of cell-of-origin NSCs. Ethanol, a common teratogen, results in dose-dependent sorting of RNA transcripts from NSCs to EVs which may reprogram the EV-mediated endocrine environment during neurogenesis.


Assuntos
Vesículas Extracelulares , MicroRNAs , Células-Tronco Neurais , Gravidez , Feminino , Masculino , Animais , Camundongos , Transcriptoma , Caracteres Sexuais , Etanol/farmacologia , MicroRNAs/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo
8.
Cell Stem Cell ; 30(4): 396-414.e9, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37028405

RESUMO

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) offer a promising cell-based therapy for myocardial infarction. However, the presence of transitory ventricular arrhythmias, termed engraftment arrhythmias (EAs), hampers clinical applications. We hypothesized that EA results from pacemaker-like activity of hPSC-CMs associated with their developmental immaturity. We characterized ion channel expression patterns during maturation of transplanted hPSC-CMs and used pharmacology and genome editing to identify those responsible for automaticity in vitro. Multiple engineered cell lines were then transplanted in vivo into uninjured porcine hearts. Abolishing depolarization-associated genes HCN4, CACNA1H, and SLC8A1, along with overexpressing hyperpolarization-associated KCNJ2, creates hPSC-CMs that lack automaticity but contract when externally stimulated. When transplanted in vivo, these cells engrafted and coupled electromechanically with host cardiomyocytes without causing sustained EAs. This study supports the hypothesis that the immature electrophysiological prolife of hPSC-CMs mechanistically underlies EA. Thus, targeting automaticity should improve the safety profile of hPSC-CMs for cardiac remuscularization.


Assuntos
Edição de Genes , Miócitos Cardíacos , Humanos , Animais , Suínos , Miócitos Cardíacos/metabolismo , Linhagem Celular , Arritmias Cardíacas/genética , Arritmias Cardíacas/terapia , Arritmias Cardíacas/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Diferenciação Celular/genética
9.
J Biomed Sci ; 30(1): 14, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823664

RESUMO

BACKGROUND: Influenza is one of the most important viral infections globally. Viral RNA-dependent RNA polymerase (RdRp) consists of the PA, PB1, and PB2 subunits, and the amino acid residues of each subunit are highly conserved among influenza A virus (IAV) strains. Due to the high mutation rate and emergence of drug resistance, new antiviral strategies are needed. Host cell factors are involved in the transcription and replication of influenza virus. Here, we investigated the role of galectin-3, a member of the ß-galactoside-binding animal lectin family, in the life cycle of IAV infection in vitro and in mice. METHODS: We used galectin-3 knockout and wild-type mice and cells to study the intracellular role of galectin-3 in influenza pathogenesis. Body weight and survival time of IAV-infected mice were analyzed, and viral production in mouse macrophages and lung fibroblasts was examined. Overexpression and knockdown of galectin-3 in A549 human lung epithelial cells were exploited to assess viral entry, viral ribonucleoprotein (vRNP) import/export, transcription, replication, virion production, as well as interactions between galectin-3 and viral proteins by immunoblotting, immunofluorescence, co-immunoprecipitation, RT-qPCR, minireplicon, and plaque assays. We also employed recombinant galectin-3 proteins to identify specific step(s) of the viral life cycle that was affected by exogenously added galectin-3 in A549 cells. RESULTS: Galectin-3 levels were increased in the bronchoalveolar lavage fluid and lungs of IAV-infected mice. There was a positive correlation between galectin-3 levels and viral loads. Notably, galectin-3 knockout mice were resistant to IAV infection. Knockdown of galectin-3 significantly reduced the production of viral proteins and virions in A549 cells. While intracellular galectin-3 did not affect viral entry, it increased vRNP nuclear import, RdRp activity, and viral transcription and replication, which were associated with the interaction of galectin-3 with viral PA subunit. Galectin-3 enhanced the interaction between viral PA and PB1 proteins. Moreover, exogenously added recombinant galectin-3 proteins also enhanced viral adsorption and promoted IAV infection in A549 cells. CONCLUSION: We demonstrate that galectin-3 enhances viral infection through increases in vRNP nuclear import and RdRp activity, thereby facilitating viral transcription and replication. Our findings also identify galectin-3 as a potential therapeutic target for influenza.


Assuntos
Vírus da Influenza A , Influenza Humana , Animais , Humanos , Camundongos , Proteínas Virais/genética , Galectina 3/genética , Galectina 3/metabolismo , Regulação para Cima , Influenza Humana/genética , RNA Viral/metabolismo , Vírus da Influenza A/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral/genética
10.
J Pediatr Ophthalmol Strabismus ; 60(6): 390-395, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36803240

RESUMO

PURPOSE: To determine whether a low-technology novel virtual vision screening protocol can reliably screen pediatric visual acuity. METHODS: Give Kids Sight Day (GKSD), an annual out-reach program, aims to provide free vision screening and ophthalmic care to underserved children in Philadelphia, Pennsylvania. Children were screened virtually through the low-technology protocol. Based on screening results, 152 children were provided in-person eye examinations. Data from in-person examinations were compared to data from virtual screenings for 151 children who were seen in-person. RESULTS: Of 475 children screened virtually, 152 children were seen in-person for examination, and 151 children were included in the analysis. Results from 151 children (mean age: 10.7 years, age range: 5 to 18 years, 43% female, 28% speaking a non-English language) were reviewed. There was a moderate correlation (R = .64, P < .0001; n = 100 children) between screening and in-person visual acuity without refractive correction and a strong correlation (R = 0.82, P < .0001; n = 18 children) between screening and in-person visual acuity with refractive correction. Of the 140 children who were seen in-person, 133 children were provided glasses prescriptions. Seventeen children required a referral to a pediatric ophthalmologist for evaluation of ophthalmic conditions, most commonly strabismus (5.3%) and amblyopia (4%). CONCLUSIONS: The GKSD virtual visual acuity testing demonstrated good correlation with in-person visual acuity testing, supporting the virtual screening approach as a useful tool for future applications in widespread community vision outreach programs. Further studies are needed to refine virtual ophthalmic screening to optimize its applications in bridging the gaps in ophthalmic care. [J Pediatr Ophthalmol Strabismus. 2023;60(6):390-395.].


Assuntos
Ambliopia , Erros de Refração , Estrabismo , Seleção Visual , Baixa Visão , Criança , Humanos , Feminino , Pré-Escolar , Adolescente , Masculino , Seleção Visual/métodos , Erros de Refração/diagnóstico , Ambliopia/diagnóstico , Acuidade Visual , Estrabismo/diagnóstico
11.
J Neurointerv Surg ; 15(e2): e240-e247, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36597943

RESUMO

BACKGROUND: There is little data available to guide optimal anesthesia management during rescue intracranial angioplasty and stenting (ICAS) for failed mechanical thrombectomy (MT). We sought to compare the procedural safety and functional outcomes of patients undergoing rescue ICAS for failed MT under general anesthesia (GA) vs non-general anesthesia (non-GA). METHODS: We searched the data from the Stenting and Angioplasty In Neuro Thrombectomy (SAINT) study. In our review we included patients if they had anterior circulation large vessel occlusion strokes due to intracranial internal carotid artery (ICA) or middle cerebral artery (MCA-M1/M2) segments, failed MT, and underwent rescue ICAS. The cohort was divided into two groups: GA and non-GA. We used propensity score matching to balance the two groups. The primary outcome was the shift in the degree of disability as measured by the modified Rankin Scale (mRS) at 90 days. Secondary outcomes included functional independence (90-day mRS0-2) and successful reperfusion defined as mTICI2B-3. Safety measures included symptomatic intracranial hemorrhage (sICH) and 90-day mortality. RESULTS: Among 253 patients who underwent rescue ICAS, 156 qualified for the matching analysis at a 1:1 ratio. Baseline demographic and clinical characteristics were balanced between both groups. Non-GA patients had comparable outcomes to GA patients both in terms of the overall degree of disability (mRS ordinal shift; adjusted common odds ratio 1.29, 95% CI [0.69 to 2.43], P=0.43) and rates of functional independence (33.3% vs 28.6%, adjusted odds ratio 1.32, 95% CI [0.51 to 3.41], P=0.56) at 90 days. Likewise, there were no significant differences in rates of successful reperfusion, sICH, procedural complications or 90-day mortality among both groups. CONCLUSIONS: Non-GA seems to be a safe and effective anesthesia strategy for patients undergoing rescue ICAS after failed MT. Larger prospective studies are warranted for more concrete evidence.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Humanos , Análise de Intenção de Tratamento , Resultado do Tratamento , Acidente Vascular Cerebral/cirurgia , Hemorragias Intracranianas/etiologia , Anestesia Geral/efeitos adversos , Trombectomia/efeitos adversos , Isquemia Encefálica/cirurgia
12.
Mol Ther Oncolytics ; 28: 104-117, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36699618

RESUMO

Glioblastoma (GBM) is the most common aggressive malignant brain cancer and is chemo- and radioresistant, with poor therapeutic outcomes. The "double-edged sword" of virus-induced cell death could be a potential solution if the oncolytic virus specifically kills cancer cells but spares normal ones. Zika virus (ZIKV) has been defined as a prospective oncolytic virus by selectively targeting GBM cells, but unclear understanding of how ZIKV kills GBM and the consequences hinders its application. Here, we found that the cellular gasdermin D (GSDMD) is required for the efficient death of a human GBM cell line caused by ZIKV infection. The ZIKV protease specifically cleaves human GSDMD to activate caspase-independent pyroptosis, harming both viral protease-harboring and naive neighboring cells. Analyzing human GSDMD variants showed that most people were susceptible to ZIKV-induced cytotoxicity, except for those with variants that resisted ZIKV cleavage or were defective in oligomerizing the N terminus GSDMD cleavage product. Consistently, ZIKV-induced secretion of the pro-inflammatory cytokine interleukin-1ß and cytolytic activity were both stopped by a small-molecule inhibitor targeting GSDMD oligomerization. Thus, potential ZIKV oncolytic therapy for GBM would depend on the patient's GSDMD genetic background and could be abolished by GSDMD inhibitors if required.

13.
Prostate Cancer Prostatic Dis ; 26(1): 194-200, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36564459

RESUMO

BACKGROUND: Bipolar androgen therapy (BAT) results in rapid fluctuation of testosterone (T) between near-castrate and supraphysiological levels and has shown promise in metastatic castration-resistant prostate cancer (mCRPC). Its clinical effects may be mediated through induction of DNA damage, and preclinical studies suggest synergy with PARP inhibitors. PATIENTS AND METHODS: This was a single-center, Phase II trial testing olaparib plus BAT (T cypionate/enanthate 400 mg every 28 days) with ongoing androgen deprivation. Planned recruitment was 30 subjects (equal proportions with/without homologous recombination repair [HRR] gene mutations) with mCRPC post abiraterone and/or enzalutamide. The primary objective was to determine PSA50 response (PSA decline ≥50% from baseline) rate at 12-weeks. The primary analysis utilized the entire (intent-to-treat [ITT]) cohort, with those dropping out early counted as non-responders. Secondary/exploratory analyses were in those treated beyond 12-weeks (response-evaluable cohort). RESULTS: Thirty-six patients enrolled and 6 discontinued prior to response assessment. In the ITT cohort, PSA50 response rate at 12-weeks was 11/36 (31%; 95% CI 17-48%), and 16/36 (44%, 95% CI 28-62%) had a PSA50 response at any time on-study. After a median follow-up of 19 months, the median clinical/radiographic progression-free survival in the ITT cohort was 13.0 months (95% CI 7-17). Clinical outcomes were similar regardless of HRR gene mutational status. CONCLUSIONS: BAT plus olaparib is associated with high response rates and long PFS. Clinical benefit was observed regardless of HRR gene mutational status.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Androgênios/uso terapêutico , Resultado do Tratamento , Antígeno Prostático Específico/uso terapêutico , Antagonistas de Androgênios/uso terapêutico , Nitrilas/uso terapêutico
14.
Pain ; 164(1): 43-58, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35442931

RESUMO

ABSTRACT: Altered bone morphogenetic protein (BMP) signaling is associated with many musculoskeletal diseases. However, it remains unknown whether BMP dysfunction has direct contribution to debilitating pain reported in many of these disorders. Here, we identified a novel neuropathic pain phenotype in patients with fibrodysplasia ossificans progressiva (FOP), a rare autosomal-dominant musculoskeletal disorder characterized by progressive heterotopic ossification. Ninety-seven percent of these patients carry an R206H gain-of-function point mutation in the BMP type I receptor ACVR1 (ACVR1 R206H ), which causes neofunction to Activin A and constitutively activates signaling through phosphorylated SMAD1/5/8. Although patients with FOP can harbor pathological lesions in the peripheral and central nervous system, their etiology and clinical impact are unclear. Quantitative sensory testing of patients with FOP revealed significant heat and mechanical pain hypersensitivity. Although there was no major effect of ACVR1 R206H on differentiation and maturation of nociceptive sensory neurons (iSNs) derived from FOP induced pluripotent stem cells, both intracellular and extracellular electrophysiology analyses of the ACVR1 R206H iSNs displayed ACVR1-dependent hyperexcitability, a hallmark of neuropathic pain. Consistent with this phenotype, we recorded enhanced responses of ACVR1 R206H iSNs to TRPV1 and TRPA1 agonists. Thus, activated ACVR1 signaling can modulate pain processing in humans and may represent a potential target for pain management in FOP and related BMP pathway diseases.


Assuntos
Miosite Ossificante , Neuralgia , Ossificação Heterotópica , Humanos , Mutação com Ganho de Função , Ossificação Heterotópica/genética , Ossificação Heterotópica/metabolismo , Ossificação Heterotópica/patologia , Miosite Ossificante/genética , Miosite Ossificante/metabolismo , Miosite Ossificante/patologia , Células Receptoras Sensoriais/metabolismo , Neuralgia/genética , Mutação/genética , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo
15.
Biomolecules ; 12(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36551265

RESUMO

Endothelial cells in vivo are subjected to a wide array of mechanical stimuli, such as cyclic stretch. Notably, a 10% stretch is associated with an atheroprotective endothelial phenotype, while a 20% stretch is associated with an atheroprone endothelial phenotype. Here, a systems biology-based approach is used to present a comprehensive overview of the functional responses and molecular regulatory networks that characterize the transition from an atheroprotective to an atheroprone phenotype in response to cyclic stretch. Using primary human umbilical vein endothelial cells (HUVECs), we determined the role of the equibiaxial cyclic stretch in vitro, with changes to the radius of the magnitudes of 10% and 20%, which are representative of physiological and pathological strain, respectively. Following the transcriptome analysis of next-generation sequencing data, we identified four key endothelial responses to pathological cyclic stretch: cell cycle regulation, inflammatory response, fatty acid metabolism, and mTOR signaling, driven by a regulatory network of eight transcription factors. Our study highlights the dynamic regulation of several key stretch-sensitive endothelial functions relevant to the induction of an atheroprone versus an atheroprotective phenotype and lays the foundation for further investigation into the mechanisms governing vascular pathology. This study has significant implications for the development of treatment modalities for vascular disease.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Mecanotransdução Celular , Estresse Mecânico , Humanos , Células Cultivadas , Biologia de Sistemas , Fatores de Transcrição/metabolismo
16.
Stroke ; 53(9): 2779-2788, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35770672

RESUMO

BACKGROUND: Successful reperfusion is one of the strongest predictors of functional outcomes after mechanical thrombectomy (MT). Despite continuous advancements in MT technology and techniques, reperfusion failure still occurs in ≈15% to 30% of patients with large vessel occlusion strokes undergoing MT. We aim to evaluate the safety and efficacy of rescue intracranial stenting for large vessel occlusion stroke after failed MT. METHODS: The SAINT (Stenting and Angioplasty in Neurothrombectomy) Study is a retrospective analysis of prospectively collected data from 14 comprehensive stroke centers through January 2015 to December 2020. Patients were included if they had anterior circulation large vessel occlusion stroke due to intracranial internal carotid artery and middle cerebral artery-M1/M2 segments and failed MT. The cohort was divided into 2 groups: rescue intracranial stenting and failed recanalization (modified Thrombolysis in Cerebral Ischemia score 0-1). Propensity score matching was used to balance the 2 groups. The primary outcome was the shift in the degree of disability as measured by the modified Rankin Scale at 90 days. Secondary outcomes included functional independence (90-day modified Rankin Scale score 0-2). Safety measures included symptomatic intracranial hemorrhage and 90-day mortality. RESULTS: A total of 499 patients were included in the analysis. Compared with the failed reperfusion group, rescue intracranial stenting had a favorable shift in the overall modified Rankin Scale score distribution (acOR, 2.31 [95% CI, 1.61-3.32]; P<0.001), higher rates of functional independence (35.1% versus 7%; adjusted odds ratio [aOR], 6.33 [95% CI, 3.14-12.76]; P<0.001), and lower mortality (28% versus 46.5%; aOR, 0.55 [95% CI, 0.31-0.96]; P=0.04) at 90 days. Rates of symptomatic intracerebral hemorrhage were comparable across both groups (7.1% versus 10.2%; aOR, 0.99 [95% CI, 0.42-2.34]; P=0.98). The matched cohort analysis demonstrated similar results. Specifically, rescue intracranial stenting (n=107) had a favorable shift in the overall modified Rankin Scale score distribution (acOR, 3.74 [95% CI, 2.16-6.57]; P<0.001), higher rates of functional independence (34.6% versus 6.5%; aOR, 10.91 [95% CI, 4.11-28.92]; P<0.001), and lower mortality (29.9% versus 43%; aOR, 0.49 [95% CI, 0.25-0.94]; P=0.03) at 90 days with similar rates of symptomatic intracerebral hemorrhage (7.5% versus 11.2%; aOR, 0.87 [95% CI, 0.31-2.42]; P=0.79) compared with patients who failed to reperfuse (n=107). There was no heterogeneity of treatment effect across the prespecified subgroups for improvement in functional outcomes. CONCLUSIONS: Acute intracranial stenting appears to be a safe and effective rescue strategy in patients with large vessel occlusion stroke who failed MT. Randomized multicenter trials are warranted.


Assuntos
Arteriopatias Oclusivas , Isquemia Encefálica , Acidente Vascular Cerebral , Angioplastia , Isquemia Encefálica/etiologia , Isquemia Encefálica/cirurgia , Hemorragia Cerebral/etiologia , Humanos , Estudos Retrospectivos , Stents , Acidente Vascular Cerebral/terapia , Trombectomia/métodos , Resultado do Tratamento
17.
Clin Ophthalmol ; 16: 423-427, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35210747

RESUMO

OBJECTIVE: To determine the prevalence and risk factors for cystoid macular edema (CME) after cataract surgery in eyes that have previously undergone macular surgery. STUDY DESIGN AND METHODS: Retrospective consecutive interventional case series. Patient medical records and Spectral Domain Optical Coherence Tomography (SD-OCT) were reviewed for eyes that underwent vitrectomy for full thickness macular hole (FTMH), lamellar macular hole (LMH) or epiretinal membrane (ERM) and subsequent cataract surgery at a large private retina practice between 2016 and 2018. RESULTS: Around 9.1% of eyes (22/243) developed CME post cataract surgery. The mean time from macular surgery to cataract surgery was 273 days (range: 87-797) in eyes with CME and 289 days (range: 22-897) in eyes without CME (p = 0.67). There was no difference in final visual acuity between eyes with CME (20/40, logMAR 0.312) and without CME (20/30, logMAR 0.206) (p = 0.101). Compared with patients with FTMH or LMH, patients with epiretinal membrane were more likely to develop post cataract CME (OR = 2.97, p = 0.031, Chi square test). CONCLUSION: In eyes with history of macular surgery, the prevalence of post cataract surgery CME was around 9.1%. The development of CME is not dependent on timing of cataract surgery but is more common in eyes with history of epiretinal membrane.

18.
Ear Nose Throat J ; 101(5): NP209-NP211, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32921184

RESUMO

A 32-year-old female with a history of bipolar disorder and schizophrenia was transported to our tertiary-care hospital after swallowing a large toilet paper holder bracket. Removal of the large foreign body required coordination between anesthesiology, otolaryngology, and trauma surgery. A tracheostomy airway was established, and the object was removed transorally. The object was found to be a toilet paper holder bracket measuring 7.5 cm × 5.4 cm × 5.4 cm with a 2.6 cm screw protruding from the end. A review of articles describing the removal of foreign bodies from the upper aerodigestive tract found our object to be the largest foreign body ingestion described in literature. One report suggested that 18% of adult patients with foreign body ingestions had primary neuropsychiatric disorders. Our patient's psychiatric disorder was a major underlying factor leading to the ingestion, with our patient reporting hallucinations instructing her to ingest household objects.


Assuntos
Corpos Estranhos , Comportamento Autodestrutivo , Adulto , Deglutição , Esôfago , Feminino , Corpos Estranhos/complicações , Corpos Estranhos/cirurgia , Alucinações , Humanos , Comportamento Autodestrutivo/complicações
19.
Cell Stem Cell ; 28(12): 2137-2152.e6, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34861147

RESUMO

During embryogenesis, paracrine signaling between tissues in close proximity contributes to the determination of their respective cell fate(s) and development into functional organs. Organoids are in vitro models that mimic organ formation and cellular heterogeneity, but lack the paracrine input of surrounding tissues. Here, we describe a human multilineage iPSC-derived organoid that recapitulates cooperative cardiac and gut development and maturation, with extensive cellular and structural complexity in both tissues. We demonstrate that the presence of endoderm tissue (gut/intestine) in the organoids contributed to the development of cardiac tissue features characteristic of stages after heart tube formation, including cardiomyocyte expansion, compartmentalization, enrichment of atrial/nodal cells, myocardial compaction, and fetal-like functional maturation. Overall, this study demonstrates the ability to generate and mature cooperative tissues originating from different germ lineages within a single organoid model, an advance that will further the examination of multi-tissue interactions during development, physiological maturation, and disease.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular , Endoderma , Humanos , Miócitos Cardíacos , Organoides
20.
Adv Ther (Weinh) ; 4(2)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34527806

RESUMO

Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults. Severe visual loss in DR is primarily due to proliferative diabetic retinopathy, characterized by pathologic preretinal angiogenesis driven by retinal ischemia. Microglia, the resident immune cells of the retina, have emerged as a potentially important regulator of pathologic retinal angiogenesis. Corticosteroids including triamcinolone acetonide (TA), known for their antiangiogenic effects, are used in treating retinal diseases, but their use is significantly limited by side effects including cataracts and glaucoma. Generation-4 hydroxyl polyamidoamine dendrimer nanoparticles are utilized to deliver TA to activated microglia in the ischemic retina in a mouse model of oxygen-induced retinopathy (OIR). Following intravitreal injection, dendrimer-conjugated TA (D-TA) exhibits selective localization and sustained retention in activated microglia in disease-associated areas of the retina. D-TA, but not free TA, suppresses inflammatory cytokine production, microglial activation, and preretinal neovascularization in OIR. In addition, D-TA, but not free TA, ameliorates OIR-induced neuroretinal and visual dysfunction. These results indicate that activated microglia are a promising therapeutic target for retinal angiogenesis and neuroprotection in ischemic retinal diseases. Furthermore, dendrimer-based targeted therapy and specifically D-TA constitute a promising treatment approach for DR, offering increased and sustained drug efficacy with reduced side effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...